Causal Effect Estimation under Linear and Log-linear Structural Nested Mean Models in the Presence of Unmeasured Confounding
نویسندگان
چکیده
In randomized clinical trials where the effects of post-randomization factors are of interest, the standard regression analyses are biased due to unmeasured confounding. The instrumental variables (IV; Angrist et al., 1996) and G-estimation procedures under structural nested mean models (SNMMs; Robins, 1994) allow one to make valid inference even if unmeasured confounding is present. Two IV approaches, the two-stage predictor substitution (2SPS) and two-stage residual inclusion (2SRI), are typically applied in analysis assuming the exclusion restriction. However, the exclusion restriction may be violated in clinical applications when the mechanism of treatment is assessed under mediation analyses. Accordingly, we focus on estimating the direct effect of the randomized treatment adjusting for a post-randomization mediator. We extend the two IV approaches to estimate the direct effect, and evaluate the corresponding theoretical properties under the linear SNMM. Under certain assumptions, we have shown that the two IV approaches are equivalent to the linear SNMM. We further extend and investigate the validity of these IV methods for estimation under a loglinear SNMM. The results show that the IV estimators are biased in the presence of unmeasured confounding. Therefore, we consider the G-estimation approach as an alternative solution to remove bias under the loglinear SNMM. The method was previously developed under either the exclusion restriction assumption or the sequential ignorability assumption. We present a general framework where these two assumptions are relaxed. In contrast to the IV log-linear regression methods, we have shown that the proposed G-estimators are unbiased in the presence of unmeasured confounding. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Epidemiology & Biostatistics First Advisor Thomas R. Ten Have Second Advisor Marshall M. Joffe
منابع مشابه
Marginal and Nested Structural Models Using Instrumental Variables
The objective of many scientific studies is to evaluate the effect of a treatment on an outcome of interest ceteris paribus. Instrumental variables (IVs) serve as an experimental handle, independent of potential outcomes and potential treatment status and affecting potential outcomes only through potential treatment status. We propose marginal and nested structural models using IVs, in the spir...
متن کاملStructural accelerated failure time models for survival analysis in studies with time-varying treatments.
BACKGROUND In the absence of unmeasured confounding factors and model misspecification, standard methods for estimating the causal effect of time-varying treatments on survival are biased when (i) there exists a time-dependent risk factor for survival that also predicts subsequent treatment and (ii) past treatment history predicts subsequent risk factor level. In contrast, structural models pro...
متن کاملInstruments for causal inference: an epidemiologist's dream?
The use of instrumental variable (IV) methods is attractive because, even in the presence of unmeasured confounding, such methods may consistently estimate the average causal effect of an exposure on an outcome. However, for this consistent estimation to be achieved, several strong conditions must hold. We review the definition of an instrumental variable, describe the conditions required to ob...
متن کاملSensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures.
Robins introduced marginal structural models (MSMs) and inverse probability of treatment weighted (IPTW) estimators for the causal effect of a time-varying treatment on the mean of repeated measures. We investigate the sensitivity of IPTW estimators to unmeasured confounding. We examine a new framework for sensitivity analyses based on a nonidentifiable model that quantifies unmeasured confound...
متن کاملA weighting approach to causal effects and additive interaction in case-control studies: marginal structural linear odds models.
Estimates of additive interaction from case-control data are often obtained by logistic regression; such models can also be used to adjust for covariates. This approach to estimating additive interaction has come under some criticism because of possible misspecification of the logistic model: If the underlying model is linear, the logistic model will be misspecified. The authors propose an inve...
متن کامل